Fasulo, Francesca (2023) Multiscale Modelling of Heterogeneous Interfaces for Energy Conversion and Storage. [Tesi di dottorato]

[thumbnail of FASULO_FRANCESCA_35.pdf]
Anteprima
Testo
FASULO_FRANCESCA_35.pdf

Download (39MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Multiscale Modelling of Heterogeneous Interfaces for Energy Conversion and Storage
Autori:
Autore
Email
Fasulo, Francesca
francesca.fasulo@unina.it
Data: 9 Marzo 2023
Numero di pagine: 211
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Scienze Chimiche
Dottorato: Scienze chimiche
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
Lombardi, Angelina
alombard@unina.it
Tutor:
nome
email
Pavone, Michele
[non definito]
Muñoz García, Ana Belen
[non definito]
Data: 9 Marzo 2023
Numero di pagine: 211
Parole chiave: Energy conversion and storage, Surface reactivity, Electrolyte/Electrode interface, DFT, Embedding Cluster methods, post Hartree-Fock, Metadynamics
Settori scientifico-disciplinari del MIUR: Area 03 - Scienze chimiche > CHIM/02 - Chimica fisica
Depositato il: 17 Mar 2023 17:57
Ultima modifica: 10 Apr 2025 13:03
URI: http://www.fedoa.unina.it/id/eprint/15136

Abstract

Over the years, great efforts have been devoted to promising energy technologies, such as batteries, photoelectrochemical, and perovskite solar cells, for conversion and storage of clean renewable energy. Despite the advances achieved in developing these devices, several crucial issues related to phenomena occurring at heterogeneous interfaces are still open, leaving room to improve both device stability and sustainability. Interfaces, with exceptionally unique features, are the locus of the major physico-chemical processes that affect the functionalities of these technologies. In this framework, the complexity of interfacial chemistry often requires computational investigations to provide valuable insights into reactivity, structural and electronic behavior of constituent materials, and to optimize the design of the most suitable ones. Nevertheless, the computational study of such complex systems is not straightforward and a reliable description of each occurring phenomenon is not feasible with a unique approach. An in-depth understanding of interface reactivity and chemistry calls for new strategies beyond the standard computational approach. To this end, this Ph.D. thesis focuses on several challenges in energy technologies, identifying the most suitable ab-initio approaches to account for external variables of in-operando conditions, e.g. electric field and solvent, and to address reactivity at heterogeneous interfaces, across different space and time scales.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento