Cuomo, Daniele (2023) Architectures and circuits for distributed quantum computing. [Tesi di dottorato]

[thumbnail of Cuomo_Daniele_35.pdf]
Anteprima
Testo
Cuomo_Daniele_35.pdf

Download (4MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Architectures and circuits for distributed quantum computing
Autori:
Autore
Email
Cuomo, Daniele
daniele.cuomo@unina.it
Data: 5 Marzo 2023
Numero di pagine: 78
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Fisica
Dottorato: Quantum Technologies (Tecnologie Quantistiche)
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
Tafuri, Francesco
francesco.tafuri@unina.it
Tutor:
nome
email
Caleffi, Marcello
[non definito]
Cacciapuoti, Angela Sara
[non definito]
Data: 5 Marzo 2023
Numero di pagine: 78
Parole chiave: quantum computing, distributed systems, circuit compilation, combinatorics
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 - Telecomunicazioni
Informazioni aggiuntive: linkedin.com/in/danielecuomo
Depositato il: 15 Mar 2023 10:12
Ultima modifica: 10 Apr 2025 14:09
URI: http://www.fedoa.unina.it/id/eprint/15204

Abstract

This thesis treats networks providing quantum computation based on distributed paradigms. Compared to architectures relying on one processor, a network promises to be more scalable and less fault-prone. Developing a distributed system able to provide practical quantum computation comes with many challenges, each of which need to be faced with careful analysis in order to create a massive integration of several components properly engineered. In accordance with hardware technologies, currently under construction around the globe, telegates represent the fundamental inter-processor operations. Each telegate consists of several tasks: i) entanglement generation and distribution, ii) local operations, and iii) classical communications. Entanglement generation and distribution is an expensive resource, as it is time-consuming. The main contribution of this thesis is on the definition of compilers that minimize the impact of telegates on the overall fidelity. Specifically, we give rigorous formulations of the subject problem, allowing us to identify the inter-dependence between computation and communication. With the support of some of the best tools for reasoning -- i.e. network optimization, circuit manipulation, group theory and ZX-calculus -- we found new perspectives on the way a distributed quantum computing system should evolve.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento