Riccardi, Marco (2023) Advanced predictive combustion model for heavy-duty CNG fuelled engines. [Tesi di dottorato]

[thumbnail of Riccardi_Marco_35.pdf]
Anteprima
Testo
Riccardi_Marco_35.pdf

Download (6MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Advanced predictive combustion model for heavy-duty CNG fuelled engines
Autori:
Autore
Email
Riccardi, Marco
marco.riccardi@unina.it
Data: 1 Marzo 2023
Numero di pagine: 126
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Industriale
Dottorato: Ingegneria industriale
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
Grassi, Michele
michele.grassi@unina.it
Tutor:
nome
email
Beatrice, Carlo
[non definito]
Bozza, Fabio
[non definito]
Data: 1 Marzo 2023
Numero di pagine: 126
Parole chiave: Heavy-Duty engines; 0D/1D modelling; Turbulent combustion model
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-IND/08 - Macchine a fluido
Depositato il: 28 Mar 2023 09:00
Ultima modifica: 10 Apr 2025 14:15
URI: http://www.fedoa.unina.it/id/eprint/15219

Abstract

The present research activity is focused on the improvement of the phenomenological turbulence model, originally conceived to describe turbulence evolution in tumble-promoting engines. The turbulence model is developed with reference to a SI heavy-duty CNG engine derived from a diesel engine. In this architecture, due to the flat cylinder head, turbulence is also generated by swirl and squish flow motions, in addition to tumble motion. The presented turbulence model is validated against 3D CFD results, demonstrating to properly predict turbulence and swirl/tumble evolution under two different operating conditions, without the need for any case-dependent tuning. The developed turbulence model is coupled to a phenomenological combustion model based on the fractal geometry theory applied to the flame front surface, where the turbulence is assumed to support flame propagation through an enhancement of the flame front area with respect to the laminar counterpart. The above phenomenological model is applied for two engines: a Spark Ignition (SI) diesel-derived heavy-duty engine and an ultra-lean active pre-chamber engine. Using a unique engine-dependent set of tuning constants, the validity of the global simulation models for both engines is evaluated by comparisons with 3D or experimental data, using a unique engine-dependent set of tuning constants. In order to determine the optimal values of each control variable in the whole operating plane, a Rule-Based (RB) calibration technique has been adopted in both models.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento