Lupo, Cosmo (2008) On the robustness of holonomic quantum computation. [Tesi di dottorato] (Unpublished)

[img]
Preview
PDF
Lupo_Fisica_Fondamentale_ed_Applicata.pdf

Download (1MB) | Preview
[error in script] [error in script]
Item Type: Tesi di dottorato
Lingua: English
Title: On the robustness of holonomic quantum computation
Creators:
CreatorsEmail
Lupo, CosmoUNSPECIFIED
Date: 2008
Date Type: Publication
Number of Pages: 111
Institution: Università degli Studi di Napoli Federico II
Department: Scienze fisiche
Dottorato: Fisica fondamentale ed applicata
Ciclo di dottorato: 20
Coordinatore del Corso di dottorato:
nomeemail
Miele, GennaroUNSPECIFIED
Tutor:
nomeemail
Marmo, GiuseppeUNSPECIFIED
Date: 2008
Number of Pages: 111
Uncontrolled Keywords: Computazione quantistica; Robustezza
Settori scientifico-disciplinari del MIUR: Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Date Deposited: 20 May 2008
Last Modified: 30 Apr 2014 19:27
URI: http://www.fedoa.unina.it/id/eprint/1789
DOI: 10.6092/UNINA/FEDOA/1789

Abstract

Besides standard dynamical schemes to realize a quantum computer, there are particular approaches which are based on intrinsic properties of quantum systems, leading to the definition of topological computation and holonomic, or geometric, computation. The holonomic approach can be viewed as the application of non-Abelian geometric phases to quantum information processing, it is believed to be fault-tolerant with respect of certain kind of parametric noise. Here we discuss the issue of robustness of holonomic quantum gates under parametric noise: we distinguish between geometric and dynamical effects of cancelation, which can appear in different contexts. A so-called standard argument in favor of the stability of noisy holonomic quantum gates is reviewed and extended to more general settings. New geometric effects that describe the behavior of noisy holonomic gates are presented. These effects lead to a refining of the optimal strategy to achieve a robust computation.

Actions (login required)

View Item View Item