Some developments in Pre-equilibrium and Equilibrium analysis of Variational Inequalities

PIA, Stéphane Nicolas (2009) Some developments in Pre-equilibrium and Equilibrium analysis of Variational Inequalities. [Tesi di dottorato] (Inedito)

Full text disponibile come:

[img]
Preview
PDF - Richiede un editor Pdf del tipo GSview, Xpdf o Adobe Acrobat Reader
3705Kb

Abstract

In the present work, the notion of equilibrium and pre-equilibrium of variational inequalities (but also some for some quasi-variational inequalities)is developed in Weighted Hilbert spaces, in strictly convex and smooth Banach spaces and in reflexive Banach spaces. The concept of Weighted variational inequality is introduced, some associated questions as regularity,delayed equilibrium and Lagrangian duality are developed and applied to the traffic equilibrium problem. The more recent notion of pre-equilibrium very important in time dependent equilibrium must be understood as the optimal path from an arbitrarily point to reach the equilibrium (critical point of the system). The notion of Non pivot and Implicit Dynamical system is introduced, an existence result is given (in Hilbert spaces with linear duality mapping) as application an existence result is given also for a specific quasi-variational inequality (translated set) without using the classical assumption for the projection (Lipschitz) [This assumption is wrong a very simple case and a counter example is provided]. The notion of projected dynamical systems is extended to strictly convex and smooth Banach spaces and reflexive Banach spaces and the equivalence between critical points of such PDS and equilibrium of Variational inequalities is proved. Some applications will also be given to the traffic equilibrium problem, an elementary design of an industrial application will be also illustrated.

Tipologia di documento:Tesi di dottorato
Parole chiave:Projected Dynamical Systems, Weighted Variational Inequalities, Banach Spaces, Traffic equilibrium problem, pre-equilibrium problem, Duality, Regularity, Existence, Projection operator in Banach Space.
Settori scientifico-disciplinari MIUR:Area 01 Scienze matematiche e informatiche > MAT/05 ANALISI MATEMATICA
Area 01 Scienze matematiche e informatiche > MAT/09 RICERCA OPERATIVA
Area 01 Scienze matematiche e informatiche > MAT/08 ANALISI NUMERICA
Coordinatori della Scuola di dottorato:
Coordinatore del Corso di dottoratoe-mail (se nota)
Ricciardi, Luigi
Tutor della Scuola di dottorato:
Tutor del Corso di dottoratoe-mail (se nota)
Maugeri, Antoninomaugeri@dmi.unict.it
Stato del full text:Accessibile
Data:29 Novembre 2009
Numero di pagine:148
Istituzione:Università degli Studi di Napoli Federico II
Dipartimento o Struttura:Dipartimento di Matematica "Renato Cacciopoli"
Tipo di tesi:Dottorato
Stato dell'Eprint:Inedito
Scuola di dottorato:Scienze Computazionali ed Informatiche
Denominazione del dottorato:Dottorato in Scienze Computazionali ed Informatiche
Ciclo di dottorato:XXII
Numero di sistema:4150
Depositato il:04 Dicembre 2009 13:47
Ultima modifica:13 Luglio 2012 11:21

Solo per gli Amministratori dell'archivio: edita il record