Donnarumma, Francesco (2009) A Model for Programmability and Virtuality in Dynamical Neural Networks. [Tesi di dottorato] (Unpublished)
Preview |
PDF
donnarumma_virtuality.pdf Download (3MB) | Preview |
Item Type: | Tesi di dottorato |
---|---|
Resource language: | English |
Title: | A Model for Programmability and Virtuality in Dynamical Neural Networks |
Creators: | Creators Email Donnarumma, Francesco donnarumma@na.infn.it |
Date: | 30 November 2009 |
Number of Pages: | 218 |
Institution: | Università degli Studi di Napoli Federico II |
Department: | Matematica e applicazioni "Renato Caccioppoli" |
Scuola di dottorato: | Scienze matematiche e informatiche |
Dottorato: | Scienze computazionali e informatiche |
Ciclo di dottorato: | 22 |
Coordinatore del Corso di dottorato: | nome email Ricciardi, Luigi Maria luigi.ricciardi@unina.ir |
Tutor: | nome email Trautteur, Giuseppe trau@na.infn.it |
Date: | 30 November 2009 |
Number of Pages: | 218 |
Keywords: | CTRNN, Fixed-weight networks, Neural dynamical systems, Programmability, Virtuality |
Settori scientifico-disciplinari del MIUR: | Area 01 - Scienze matematiche e informatiche > INF/01 - Informatica |
Date Deposited: | 04 Dec 2009 12:50 |
Last Modified: | 10 Nov 2014 13:47 |
URI: | http://www.fedoa.unina.it/id/eprint/4293 |
DOI: | 10.6092/UNINA/FEDOA/4293 |
Collection description
In this dissertation a fixed-weight architecture for Continuous Time Recurrent Neural Networks (CTRNNs) is proposed in order to give an account for biological phenomena, controlled by neuronal activity, in which changes of behavior occur so fast that presumably no changes in the involved neuronal connectivity are possible. The proposed model possesses the following properties: a. the neural network variables have a direct biological interpretation; b. the change of behavior is controllable by auxiliary (programming) inputs; c. a single fixed-weight neural network has the capability to exhibit a wide repertoire of different behaviors given the appropriate auxiliary inputs. Such properties allow the model to be biologically plausible on the neural level and, at the same time, should sustain a programmability / virtuality capability usually associated only with the algorithmic, symbolic systems used in the high level functional modeling of biological systems. A number of experiments are performed which corroborate: 1) the capability of the proposed architecture to be programmed with auxiliary inputs in order to reproduce the dynamical behaviors of networks with weight values coded by the auxiliary input; 2) the robustness of the proposed architecture w.r.t. variations of the I/O time scales.
Downloads
Downloads per month over past year
Actions (login required)
View Item |