Scialdone, Antonio (2010) Statistical mechanics of genome regulation: the case of X chromosome inactivation. [Tesi di dottorato] (Inedito)

[img]
Anteprima
PDF
scialdone_antonio_23.pdf

Download (10MB) | Anteprima
[error in script] [error in script]
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Statistical mechanics of genome regulation: the case of X chromosome inactivation
Autori:
AutoreEmail
Scialdone, Antonioantoscial@gmail.com
Data: 24 Novembre 2010
Numero di pagine: 102
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Scienze fisiche
Scuola di dottorato: Scienze fisiche
Dottorato: Fisica fondamentale ed applicata
Ciclo di dottorato: 23
Coordinatore del Corso di dottorato:
nomeemail
Marrucci, Lorenzolorenzo.marrucci@na.infn.it
Tutor:
nomeemail
Nicodemi, Mariomario.nicodemi@na.infn.it
Data: 24 Novembre 2010
Numero di pagine: 102
Parole chiave: Statistical Mechanics; genome regulation; X inactivation; DNA spatial architecture; stochastic regulatory mechanisms
Settori scientifico-disciplinari del MIUR: Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Area 02 - Scienze fisiche > FIS/07 - Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Depositato il: 08 Dic 2010 12:01
Ultima modifica: 30 Apr 2014 19:43
URI: http://www.fedoa.unina.it/id/eprint/7951
DOI: 10.6092/UNINA/FEDOA/7951

Abstract

The aim of my PhD research project was to discover the mechanisms behind X Chromosome Inactivation (XCI) one of the most intriguing issues of the current mammalian Biology. XCI is the process whereby a female mammal cell silences one of its two X chromosomes randomly chosen, to equalize the dosage of X products with respect to males (having just one X). We used theoretical models from Statistical Physics and their massive computer simulations to dissect this chromosome-wide stochastic regulatory process. The importance of these investigations goes beyond the XCI, as the comprehension of this process, can indeed shed light on a whole class of regulatory mechanisms involving the genome. By means of our quantitive models, which already found some important experimental confirmations, we were able to provide a new deeper level of understanding of the underlying physical and molecular mechanisms. Precise predictions are given for many genetic/chemical manipulations and a new generation of experiments can be designed. A close interplay between theory and experiments, was guaranteed in our project by the collaboration with an experimental group from Harvard Medical School, USA.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento