Bruno, Alessandro (2011) TECHNOLOGICAL ASPECTS OF QUANTUM DECOHERENCE IN SUPERCONDUCTING JOSEPHSON QUBITS. [Tesi di dottorato] (Unpublished)
Preview |
PDF
Bruno_Alessandro_24.pdf Download (10MB) | Preview |
Item Type: | Tesi di dottorato |
---|---|
Resource language: | English |
Title: | TECHNOLOGICAL ASPECTS OF QUANTUM DECOHERENCE IN SUPERCONDUCTING JOSEPHSON QUBITS |
Creators: | Creators Email Bruno, Alessandro alessandrobr1@gmail.com |
Date: | 30 November 2011 |
Number of Pages: | 213 |
Institution: | Università degli Studi di Napoli Federico II |
Department: | Scienze fisiche |
Scuola di dottorato: | Ingegneria industriale |
Dottorato: | Tecnologie innovative per materiali, sensori ed imaging |
Ciclo di dottorato: | 24 |
Coordinatore del Corso di dottorato: | nome email Andreone, Antonello andreone@unina.it |
Tutor: | nome email Lisistskiy, Mikhail m.lisitskiy@cib.na.cnr.it Cristiano, Roberto r.cristiano@cib,.na.cnr.it |
Date: | 30 November 2011 |
Number of Pages: | 213 |
Keywords: | Qubits, superconducting resonators, Josephson junctions |
Settori scientifico-disciplinari del MIUR: | Area 02 - Scienze fisiche > FIS/03 - Fisica della materia |
Date Deposited: | 12 Dec 2011 12:27 |
Last Modified: | 30 Apr 2014 19:49 |
URI: | http://www.fedoa.unina.it/id/eprint/8997 |
DOI: | 10.6092/UNINA/FEDOA/8997 |
Collection description
The aim of this thesis was to realize superconducting quantum bits by using novel fabrication techniques and materials in order to enhance the coherence time of the former devices. For the system to be studied we chose the ux-biased phase qubit, which consists of a Josephson junction integrated in a superconducting loop. This qubit realization has some advantages, which make it an ideal test-bed for different fabrication technologies and materials. Relatively large Josephson junctions can be used in the phase qubit realization, which are easy to be fabricated by using standard lithographic technology with the flexibility of employing various fabrication techniques and materials. The coherence of current-generation of superconducting qubits seems to be limited by intrinsic sources of noise and energy loss, related to materials' defects (two-level systems, TLSs) on the surfaces and interfaces of the superconducting lms, and in the bulk of the dielectric films used for the microelectronic realization of the circuits. For this reason, we aimed our research activities on the realization of low loss dielectrics (a-Si:H), on its integration with Josephson junction technologies, on the protection of the superconducting films' surfaces from unwanted contamination, and on the optimization of the circuit design and fabrication processes.
Downloads
Downloads per month over past year
Actions (login required)
View Item |