Di Meglio, Guglielmo (2013) Some Inequalities for Eigenfunctions and Eigenvalues of Certain Elliptic Operators. [Tesi di dottorato]

[thumbnail of Tesi_Di_Meglio-def.pdf]
Anteprima
Testo
Tesi_Di_Meglio-def.pdf

Download (696kB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Some Inequalities for Eigenfunctions and Eigenvalues of Certain Elliptic Operators
Autori:
Autore
Email
Di Meglio, Guglielmo
guglielmo.dimeglio@unina.it
Data: 2 Aprile 2013
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Matematica e applicazioni "Renato Caccioppoli"
Scuola di dottorato: Scienze matematiche e informatiche
Dottorato: Scienze matematiche
Ciclo di dottorato: 24
Coordinatore del Corso di dottorato:
nome
email
De Giovanni, Francesco
degiovanni@unina.it
Tutor:
nome
email
Ferone, Vincenzo
ferone@unina.it
Data: 2 Aprile 2013
Parole chiave: Rearrangements, symmetrized eigenfunctions, principal eigenvalue, Faber-Krahn inequality
Settori scientifico-disciplinari del MIUR: Area 01 - Scienze matematiche e informatiche > MAT/05 - Analisi matematica
Depositato il: 14 Apr 2013 14:31
Ultima modifica: 10 Dic 2014 14:12
URI: http://www.fedoa.unina.it/id/eprint/9424

Abstract

We present some geometric and analytic inequalities related to solutions of certain elliptic PDEs. In chapter 1, we introduced the symmetrization techniques which will be used through the paper. In chapter 2, we prove a family of isoperimetric inequalities for bodies of revolution which arise in connection with the problem of finding the extremals in some Hardy-Sobolev inequality. In particular, we are able to prove that the inequalities are sharp and that a characterization of the equality case is available, yielding the best constant. In chapter 3, we prove two stability type estimates which involve the symmetrized normalized first eigenfunction of certain elliptic operators (modelled on the Laplacian). In particular, we prove that the $L^\infty$-distance of the symmetrized first eigenfunction from the first eigenfunction of a suitable symmetrized problem can be controlled using the distance between the first eigenvalues of such problems. In chapter 4, we prove a generalization of the classical Faber-Krahn inequality for the principal weighted eigenvalue of $p$-Laplace operator plus an indefinite potential.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento