Pallotta, Luca (2014) Covariance Matrix Estimation for Radar Applications. [Tesi di dottorato]

[thumbnail of pallotta_luca_26.pdf]
Preview
Text
pallotta_luca_26.pdf

Download (1MB) | Preview
Item Type: Tesi di dottorato
Resource language: English
Title: Covariance Matrix Estimation for Radar Applications
Creators:
Creators
Email
Pallotta, Luca
luca.pallotta@unina.it
Date: 28 March 2014
Number of Pages: 140
Institution: Università degli Studi di Napoli Federico II
Department: Ingegneria Elettrica e delle Tecnologie dell'Informazione
Scuola di dottorato: Ingegneria dell'informazione
Dottorato: Ingegneria elettronica e delle telecomunicazioni
Ciclo di dottorato: 26
Coordinatore del Corso di dottorato:
nome
email
Rinaldi, Niccolò
nirinald@unina.it
Tutor:
nome
email
De Maio, Antonio
UNSPECIFIED
Date: 28 March 2014
Number of Pages: 140
Keywords: covariance matrix estimation, adaptive radar receiver
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 - Telecomunicazioni
Date Deposited: 08 Apr 2014 11:29
Last Modified: 27 Jan 2015 11:42
URI: http://www.fedoa.unina.it/id/eprint/9710

Collection description

In a typical radar system, the power of the useful signal component is tipically lower than the competing disturbance strength; consequently, radar detection becomes a very challenging problem. The SINR (Signal to Interference plus Noise Ratio) is generally the most critical figure of merit when designing a radar filter. The processor that maximizes the output SINR is a coherent, linear, transversal filter, based on the exact knowledge of the true disturbance covariance matrix. However, in real radar systems, this requirement cannot be satisfied and an estimate of the covariance matrix is adopted instead of the exact one, leading to the so-called adaptive radars. The aim of this thesis is the introduction of innovative covariance matrix estimation techniques, operating in different conditions. In particular, a covariance matrix estimator, based on statistical argumentations, is presented when homogeneous secondary data are available. Moreover, exploiting geometric considerations, two family of covariance estimators are defined and adopted for training data selection, which is useful when some outliers affect the secondary data. Finally, a family of radar receivers for extended targets in range, enforcing several structures over the disturbance covariance, is described, which is effective when it is not possible to identify secondary data free of targets.

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item