Giugliano, Maria Maddalena (2014) Diagnostic Measures for Multinomial Distance Model. [Tesi di dottorato]
Anteprima |
Testo
Thesis.pdf Download (867kB) | Anteprima |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Diagnostic Measures for Multinomial Distance Model |
Autori: | Autore Email Giugliano, Maria Maddalena mariamaddalena.giugliano@unina.it |
Data: | 31 Marzo 2014 |
Numero di pagine: | 93 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Scienze Economiche e Statistiche |
Scuola di dottorato: | Scienze economiche e statistiche |
Dottorato: | Statistica |
Ciclo di dottorato: | 26 |
Coordinatore del Corso di dottorato: | nome email Lauro, Carlo Natale clauro@unina.it |
Tutor: | nome email Siciliano, Roberta [non definito] |
Data: | 31 Marzo 2014 |
Numero di pagine: | 93 |
Parole chiave: | Diagnostics, Multinomial Distance Model, Multinomial Logit Models. |
Settori scientifico-disciplinari del MIUR: | Area 13 - Scienze economiche e statistiche > SECS-S/01 - Statistica |
Depositato il: | 15 Apr 2014 18:48 |
Ultima modifica: | 27 Gen 2015 13:57 |
URI: | http://www.fedoa.unina.it/id/eprint/9889 |
Abstract
Qualitative data are more and more present in any field of research. For example, in medicine one can be interested in predicting an illness based on some symptoms (e.g. presence/absence of physical characteristics), in psychology one can be interested in classifying different types of mental status of human being through behaviors, or in economy firms are interested in splitting customers into different groups based on their purchasing preferences to address marketing researches. Many techniques are developed to handle these type of data. Most of them allow only a detailed model evaluation (e.g. Discriminant Analysis) while others (e.g. multidimensional procedures) produce graphical representation of the data. Ideal Point Discriminant Analysis proposed by Takane (Takane, Bozdogan & Shibayama, 1987) is a semi-parametric model that allows both detailed evaluation and graphical representation of the data and it handles with all of kinds of predictors (categorical and numerical one). Multinomial Distance Model is an extension of IPDA and it has been proved (De Rooij, 2009) that it allows to a better graphical representation of the data than ideal point discriminant analysis. The main weakness of this model is that diagnostic statistics to evaluate the fit as well as outliers are not available. This work focuses on diagnostics to detect outliers for these kind of models. We will show that, even if Multinomial Distance Model is not a generalized linear model (it is a bilinear model), it can be regarded as a constrained baseline category logit model and based on this fact we will extend the diagnostics of multiple-group logistic regression to it.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |