Durante, Lorenzo (2014) Identification, production and structural modelling of cationic antimicrobial peptides (CAMPs). [Tesi di dottorato]

[thumbnail of durante_lorenzo_26.pdf]
Anteprima
Testo
durante_lorenzo_26.pdf

Download (8MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Identification, production and structural modelling of cationic antimicrobial peptides (CAMPs)
Autori:
Autore
Email
Durante, Lorenzo
l.durante@studenti.unina.it
Data: 31 Marzo 2014
Numero di pagine: 102
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Medicina Molecolare e Biotecnologie Mediche
Scuola di dottorato: Biotecnologie
Dottorato: Biologia computazionale e bioinformatica
Ciclo di dottorato: 26
Coordinatore del Corso di dottorato:
nome
email
Cocozza, Sergio
cocozza@unina.it
Tutor:
nome
email
Notomista, Eugenio
[non definito]
Data: 31 Marzo 2014
Numero di pagine: 102
Parole chiave: antimicrobial peptides; Monte Carlo; recombinant peptide
Settori scientifico-disciplinari del MIUR: Area 05 - Scienze biologiche > BIO/10 - Biochimica
Informazioni aggiuntive: Il lavoro è stato svolto presso il Dipartimento di Biologia
Depositato il: 07 Apr 2014 13:29
Ultima modifica: 15 Lug 2015 01:02
URI: http://www.fedoa.unina.it/id/eprint/9962

Abstract

This work is part of the wide field of research on cationic antimicrobial peptides (CAMPs), molecules of great therapeutical potential for their antibacterial action, directed also against multi-drug resistant strains. By using a panel of bioinformatic, experimental and computational techniques, three novel tools were developed: (1) a scoring function, which allows the identification of putative CAMPs inside protein sequences and permits to perform strain-specific researches; (2) a fusion construct for the expression of recombinant CAMPs, which allows to prepare high purity peptides of variable length in high yields; (3) methods for the modelling of CAMPs by means of the Monte Carlo strategy and implicit solvation energy functions.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento