Hay Mele, Bruno (2017) Exploring the potential of cell-based models in simulating tissue biophysics in plant morphogenesis: the case of woody tissues. [Tesi di dottorato]

[img]
Anteprima
Testo
HayMele_Bruno_30.pdf

Download (29MB) | Anteprima
[error in script] [error in script]
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Exploring the potential of cell-based models in simulating tissue biophysics in plant morphogenesis: the case of woody tissues.
Autori:
AutoreEmail
Hay Mele, Brunobruno.haymele@unina.it
Data: 11 Dicembre 2017
Numero di pagine: 57
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: dep01
Dottorato: phd073
Ciclo di dottorato: 30
Coordinatore del Corso di dottorato:
nomeemail
D'Urso, Guidoguido.durso@unina.it
Tutor:
nomeemail
Giannino, Francesco[non definito]
Data: 11 Dicembre 2017
Numero di pagine: 57
Parole chiave: plant biology, biomechanics, mathematical modelling
Settori scientifico-disciplinari del MIUR: Area 05 - Scienze biologiche > BIO/03 - Botanica ambientale e applicata
Area 01 - Scienze matematiche e informatiche > MAT/08 - Analisi numerica
Depositato il: 03 Gen 2018 11:33
Ultima modifica: 20 Mar 2019 12:02
URI: http://www.fedoa.unina.it/id/eprint/12179

Abstract

This thesis considers the status of computational modelling in plant biology. After a brief introduction to modelling in biology, the reader is introduced to different approaches and tool. Among them, cell-based modelling is chosen to first model the effect of cell wall mechanics over tissue growth, and then xylogenesis of a generic conifer is simulated. In order to do so, the VirtualLeaf modelling framework has been used and extended with a description of the mechanical effects of thickness over cell dynamics. The frameworks proved itself a good tool for modeling such dynamics, and the output of the simulations suggest that tissue properties like growth anisotropy and proliferation rate (in the first case) and early- to latewood transition (in the second case) could be strongly linked to mechanical cell-autonomous properties and cell-cell interaction.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento