Sica, Federica (2021) Meshless Methods for Option Pricing and Risks Computation. [Tesi di dottorato]

[thumbnail of Sica_Federica_33.pdf]
Anteprima
Testo
Sica_Federica_33.pdf

Download (5MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Meshless Methods for Option Pricing and Risks Computation
Autori:
Autore
Email
Sica, Federica
federica.sica@unina.it
Data: 10 Aprile 2021
Numero di pagine: 86
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Scienze Economiche e Statistiche
Dottorato: Economia
Ciclo di dottorato: 33
Coordinatore del Corso di dottorato:
nome
email
Pagano, Marco
pagano56@gmail.com
Tutor:
nome
email
Di Lorenzo, Emilia
[non definito]
Data: 10 Aprile 2021
Numero di pagine: 86
Parole chiave: meshless, pricing, risks
Settori scientifico-disciplinari del MIUR: Area 13 - Scienze economiche e statistiche > SECS-S/06 - Metodi matematici dell'economia e delle scienze attuariali e finanziarie
Depositato il: 19 Mag 2021 13:20
Ultima modifica: 07 Giu 2023 10:33
URI: http://www.fedoa.unina.it/id/eprint/13904

Abstract

In this thesis we price several financial derivatives by means of radial basis functions. Our main contribution consists in extending the usage of said numerical methods to the pricing of more complex derivatives - such as American and basket options with barriers - and in computing the associated risks. First, we derive the mathematical expressions for the prices and the Greeks of given options; next, we implement the corresponding numerical algorithm in MATLAB and calculate the results. We compare our results to the most common techniques applied in practice such as Finite Differences and Monte Carlo methods. We mostly use real data as input for our examples. We conclude radial basis functions offer a valid alternative to current pricing methods, especially because of the efficiency deriving from the free, direct calculation of risks during the pricing process. Eventually, we provide suggestions for future research by applying radial basis function for an implied volatility surface reconstruction.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento