Magnani, Alessandro (2015) Dynamic Thermal Feedback Blocks for Electrothermal Simulation of Devices, Circuits and Systems. [Tesi di dottorato]

[img]
Anteprima
Testo
Magnani.pdf

Download (17MB) | Anteprima
[error in script] [error in script]
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Dynamic Thermal Feedback Blocks for Electrothermal Simulation of Devices, Circuits and Systems
Autori:
AutoreEmail
Magnani, AlessandroALESSANDRO.MAGNANI@UNINA.IT
Data: 31 Marzo 2015
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Elettrica e delle Tecnologie dell'Informazione
Scuola di dottorato: Ingegneria dell'informazione
Dottorato: Ingegneria elettronica e delle telecomunicazioni
Ciclo di dottorato: 27
Coordinatore del Corso di dottorato:
nomeemail
Riccio, Daniele[non definito]
Tutor:
nomeemail
Rinaldi, Niccolò[non definito]
d'Alessandro, Vincenzo[non definito]
Data: 31 Marzo 2015
Parole chiave: Electrothermal, Model-order reduction, Macromodeling, SPICE, Thermal modeling, SiGe, GaAs, HBT, Thermal Feedback, Parametric Macromodeling, Carbon Nanotubes, Solar panel, Power delivery networks, Unclamped Inductive Switching, Short Circuit
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 - Elettronica
Informazioni aggiuntive: Indirizzo alternativo - alessandro.magnani.85@gmail.com Numero di telefono laboratorio - 0817683145
Depositato il: 07 Apr 2015 10:51
Ultima modifica: 17 Apr 2018 01:00
URI: http://www.fedoa.unina.it/id/eprint/10164
DOI: 10.6093/UNINA/FEDOA/10164

Abstract

The behavior of modern electronic systems can be accurately modeled only by self-consistently solving the thermal and electrical problems in a coupled electrothermal (ET) simulation. Thermal Feedback Blocks (TFBs) describing the power-temperature feedback have been proposed to meet the designers' demand for accurate - yet fast and easy to use - tools to perform thermal and ET analyses. An in-house tool has been implemented for the extraction of linear TFBs, which have been further extended by: (i) including parameterization describing design choices; (ii) proposing a novel tool based on a model order reduction technique with very high performances with respect to standard commercial solution; (iii) accounting for thermal nonlinearities in an arbitrarily-complex structure; (iv) considering advanced physical phenomena for very small devices; (v) developing a clustering-based approach to simplify the study of power delivery networks. Dynamic ET simulations relying on TFBs have been, subsequently, performed for a wide variety of applications at device, circuit and system level.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento