D'Onofrio, Giuseppe (2016) Stochastic methods and models for neuronal activity and motor proteins. [Tesi di dottorato]

[img]
Anteprima
Testo
donofrio_giuseppe_XXVIII.pdf

Download (5MB) | Anteprima
[error in script] [error in script]
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Stochastic methods and models for neuronal activity and motor proteins
Autori:
AutoreEmail
D'Onofrio, Giuseppegiuseppe.donofrio@unina.it
Data: 30 Marzo 2016
Numero di pagine: 103
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Matematica e Applicazioni "Renato Caccioppoli"
Scuola di dottorato: Scienze matematiche ed informatiche
Dottorato: Scienze computazionali e informatiche
Ciclo di dottorato: 28
Coordinatore del Corso di dottorato:
nomeemail
Moscariello, Giocondagioconda.moscariello@unina.it
Tutor:
nomeemail
Pirozzi, Enrica[non definito]
Data: 30 Marzo 2016
Numero di pagine: 103
Parole chiave: Gauss-Markov processes, first passage time, acto-myosin dynamics
Settori scientifico-disciplinari del MIUR: Area 01 - Scienze matematiche e informatiche > MAT/06 - Probabilità e statistica matematica
Informazioni aggiuntive: Il file è in formato PDF/A
Depositato il: 12 Apr 2016 14:31
Ultima modifica: 02 Nov 2016 11:47
URI: http://www.fedoa.unina.it/id/eprint/10846

Abstract

The main topic of this thesis is to specialize mathematical methods and construct stochastic models for describing and predict biological dynamics such as neuronal firing and acto-myosin sliding. The apparently twofold theme on which we focused the research is part of a strictly unitary context as the methods and tools of investigation adapt naturally to both issues. Models describing the stochastic evolution in the case of neuronal activity or that of the acto-myosin dynamics are governed by stochastic differential equations whose solutions are diffusion processes and Gauss-Markov processes. Of fundamental importance in the study of these phenomena is the determination of the density of the first passage times through one or two time-depending boundaries. For this purpose the development or use of numerical solution algorithms and the comparison of the results with those obtained by simulation algorithms is essential. A particular type of Gauss-Markov process (the time-inhomogeneous Ornstein-Uhlenbeck process) and its first passage time through suitable boundaries are fundamental for modeling phenomena subject to additional (external) time-dependent forces.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento