Pirone, Daniele (2022) Tomographic phase microscopy in flow cytometry. [Tesi di dottorato]

[thumbnail of pirone_daniele_35_COMPLETO.pdf] Testo
pirone_daniele_35_COMPLETO.pdf
Visibile a [TBR] Amministratori dell'archivio

Download (20MB) | Richiedi una copia
[thumbnail of pirone_daniele_35_PARZIALE.pdf]
Anteprima
Testo
pirone_daniele_35_PARZIALE.pdf

Download (18MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Tomographic phase microscopy in flow cytometry
Autori:
Autore
Email
Pirone, Daniele
daniele.pirone@unina.it
Data: 10 Dicembre 2022
Numero di pagine: 350
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Elettrica e delle Tecnologie dell'Informazione
Dottorato: Information and Communication Technology for Health
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
Riccio, Daniele
daniele.riccio@unina.it
Tutor:
nome
email
Liseno, Angelo
[non definito]
Capozzoli, Amedeo
[non definito]
Curcio, Claudio
[non definito]
Ferraro, Pietro
[non definito]
Memmolo, Pasquale
[non definito]
Data: 10 Dicembre 2022
Numero di pagine: 350
Parole chiave: Single-Cell Analysis; Digital Holography; Imaging Flow Cytometry; Tomographic Phase Microscopy; Artificial Intelligence; Liquid Biopsy
Settori scientifico-disciplinari del MIUR: Area 02 - Scienze fisiche > FIS/07 - Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Area 09 - Ingegneria industriale e dell'informazione > ING-INF/02 - Campi elettromagnetici
Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 - Sistemi di elaborazione delle informazioni
Depositato il: 25 Gen 2023 01:09
Ultima modifica: 09 Apr 2025 14:10
URI: http://www.fedoa.unina.it/id/eprint/14685

Abstract

The future of early diagnosis and precision medicine will be based on the advanced single-cell analysis. To date, the gold-standard technique is Fluorescence Imaging Flow Cytometry (FIFC), which is able to quickly record 2D images of stained single cells while flowing through a measuring device. Thus, FIFC can satisfy the need for large informative datasets typical of Artificial Intelligence (AI), which has made possible a fast, automatic, and objective cell phenotyping. However, the staining process and the 2D qualitative information limit the FIFC clinical applications. Conversely, Tomographic Phase Microscopy (TPM) is a label-free optical microscopy technique that allows reconstructing the 3D spatial distribution of the refractive index (RI) at the single-cell level. The cellular RI is a key biophysical parameter proved to be an effective descriptor of cellular heterogeneity. In 2017, TPM has been proved working in Flow Cytometry (FC) mode. In TPM-FC, digital holograms of single cells are recorded in continuous flow while rotating in microfluidic environment. The TPM-FC tool is expected to create a breakthrough in the cell biology studies and in the clinical practice. Therefore, several computational strategies are developed in this Ph.D. Thesis for transferring the original proof of concept of TPM-FC into a concrete technology for the single-cell analysis. In particular, various issues to achieve the high-throughput property have been fixed and the lack of intracellular specificity, due to the label-free modality, has been filled for some organelles. Finally, the large datasets of single cells, collected through the TPM-FC system, have been used to train AI models for phenotyping cancer cells and recognizing drug resistance. In the near future, the attained results are expected to contribute in providing a solution to the challenging topic of the Liquid Biopsy (LB) technology, which aims to the early diagnosis of cancer and the development of personalized therapies by means of blood tests.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento