Pirone, Daniele (2022) Tomographic phase microscopy in flow cytometry. [Tesi di dottorato]
![]() |
Testo
pirone_daniele_35_COMPLETO.pdf Visibile a [TBR] Amministratori dell'archivio Download (20MB) | Richiedi una copia |
Anteprima |
Testo
pirone_daniele_35_PARZIALE.pdf Download (18MB) | Anteprima |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Tomographic phase microscopy in flow cytometry |
Autori: | Autore Email Pirone, Daniele daniele.pirone@unina.it |
Data: | 10 Dicembre 2022 |
Numero di pagine: | 350 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Ingegneria Elettrica e delle Tecnologie dell'Informazione |
Dottorato: | Information and Communication Technology for Health |
Ciclo di dottorato: | 35 |
Coordinatore del Corso di dottorato: | nome email Riccio, Daniele daniele.riccio@unina.it |
Tutor: | nome email Liseno, Angelo [non definito] Capozzoli, Amedeo [non definito] Curcio, Claudio [non definito] Ferraro, Pietro [non definito] Memmolo, Pasquale [non definito] |
Data: | 10 Dicembre 2022 |
Numero di pagine: | 350 |
Parole chiave: | Single-Cell Analysis; Digital Holography; Imaging Flow Cytometry; Tomographic Phase Microscopy; Artificial Intelligence; Liquid Biopsy |
Settori scientifico-disciplinari del MIUR: | Area 02 - Scienze fisiche > FIS/07 - Fisica applicata (a beni culturali, ambientali, biologia e medicina) Area 09 - Ingegneria industriale e dell'informazione > ING-INF/02 - Campi elettromagnetici Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 - Sistemi di elaborazione delle informazioni |
Depositato il: | 25 Gen 2023 01:09 |
Ultima modifica: | 09 Apr 2025 14:10 |
URI: | http://www.fedoa.unina.it/id/eprint/14685 |
Abstract
The future of early diagnosis and precision medicine will be based on the advanced single-cell analysis. To date, the gold-standard technique is Fluorescence Imaging Flow Cytometry (FIFC), which is able to quickly record 2D images of stained single cells while flowing through a measuring device. Thus, FIFC can satisfy the need for large informative datasets typical of Artificial Intelligence (AI), which has made possible a fast, automatic, and objective cell phenotyping. However, the staining process and the 2D qualitative information limit the FIFC clinical applications. Conversely, Tomographic Phase Microscopy (TPM) is a label-free optical microscopy technique that allows reconstructing the 3D spatial distribution of the refractive index (RI) at the single-cell level. The cellular RI is a key biophysical parameter proved to be an effective descriptor of cellular heterogeneity. In 2017, TPM has been proved working in Flow Cytometry (FC) mode. In TPM-FC, digital holograms of single cells are recorded in continuous flow while rotating in microfluidic environment. The TPM-FC tool is expected to create a breakthrough in the cell biology studies and in the clinical practice. Therefore, several computational strategies are developed in this Ph.D. Thesis for transferring the original proof of concept of TPM-FC into a concrete technology for the single-cell analysis. In particular, various issues to achieve the high-throughput property have been fixed and the lack of intracellular specificity, due to the label-free modality, has been filled for some organelles. Finally, the large datasets of single cells, collected through the TPM-FC system, have been used to train AI models for phenotyping cancer cells and recognizing drug resistance. In the near future, the attained results are expected to contribute in providing a solution to the challenging topic of the Liquid Biopsy (LB) technology, which aims to the early diagnosis of cancer and the development of personalized therapies by means of blood tests.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |